Nonadaptive processes in primate and human evolution.
نویسنده
چکیده
Evolutionary biology has tended to focus on adaptive evolution by positive selection as the primum mobile of evolutionary trajectories in species while underestimating the importance of nonadaptive evolutionary processes. In this review, I describe evidence that suggests that primate and human evolution has been strongly influenced by nonadaptive processes, particularly random genetic drift and mutation. This is evidenced by three fundamental effects: a relative relaxation of selective constraints (i.e., purifying selection), a relative increase in the fixation of slightly deleterious mutations, and a general reduction in the efficacy of positive selection. These effects are observed in protein-coding, regulatory regions, and in gene expression data, as well as in an augmentation of fixation of large-scale mutations, including duplicated genes, mobile genetic elements, and nuclear mitochondrial DNA. The evidence suggests a general population-level explanation such as a reduction in effective population size (N(e)). This would have tipped the balance between the evolutionary forces of natural selection and random genetic drift toward genetic drift for variants having small selective effects. After describing these proximate effects, I describe the potential consequences of these effects for primate and human evolution. For example, an increase in the fixation of slightly deleterious mutations could potentially have led to an increase in the fixation rate of compensatory mutations that act to suppress the effects of slightly deleterious substitutions. The potential consequences of compensatory evolution for the evolution of novel gene functions and in potentially confounding the detection of positively selected genes are explored. The consequences of the passive accumulation of large-scale genomic mutations by genetic drift are unclear, though evidence suggests that new gene copies as well as insertions of transposable elements into genes can potentially lead to adaptive phenotypes. Finally, because a decrease in selective constraint at the genetic level is expected to have effects at the morphological level, I review studies that compare rates of morphological change in various mammalian and island populations where N(e) is reduced. Furthermore, I discuss evidence that suggests that craniofacial morphology in the Homo lineage has shifted from an evolutionary rate constrained by purifying selection toward a neutral evolutionary rate.
منابع مشابه
P-50: Elongating and Elongated Spermatids Manufactured In Vitro from Non-Human Primate Pluripotent Stem Cells
Background: We have recently shown that human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs) can differentiate into advanced spermatogenic cells including round spermatids by in vitro culture (Easley et al., Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells. Cell Reports 2, 440-446 2012) and also, in collaboration, that rhesus spermatogonial ...
متن کاملShort-latency category specific neural responses to human faces in macaque inferotemporal cortex
In this article I would present evidence to show that timing of the flow of neural signals within the ventral visual stream is a crucial part of the neural code for categorization of faces. We recorded the activity of 554 inferotemporal neurons from two macaque monkeys performing a fixation task. More than 1000 object images including human and non-primate animal faces were presented up to 10 t...
متن کاملNonadaptive radiation: Pervasive diet specialization by drift in scale insects?
At least half of metazoan species are herbivorous insects. Why are they so diverse? Most herbivorous insects feed on few plant species, and adaptive host specialization is often invoked to explain their diversification. Nevertheless, it is possible that the narrow host ranges of many herbivorous insects are nonadaptive. Here, we test predictions of this hypothesis with comparative phylogenetic ...
متن کاملDevelopmental processes and canine dimorphism in primate evolution.
Understanding the evolutionary history of canine sexual dimorphism is important for interpreting the developmental biology, socioecology and phylogenetic position of primates. All current evidence for extant primates indicates that canine dimorphism is achieved through bimaturism rather than via differences in rates of crown formation time. Using incremental growth lines, we charted the ontogen...
متن کاملPrimate comparative genomics: lemur biology and evolution.
Comparative genome sequencing projects are providing insight into aspects of genome biology that raise new questions and challenge existing paradigms. Placement in the phylogenetic tree can often be a major determinant of which organism to choose for study. Lemurs hold a key position at the base of the primate evolutionary tree and will be highly informative for the genomics community by offeri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physical anthropology
دوره 143 Suppl 51 شماره
صفحات -
تاریخ انتشار 2010